常用集合运算符号

最近看论文碰到不少之前从未接触过的符号,因为主要是针对的集合操作,所以这里贴出下常见(有些对LZ来说并不常见的一些集合运算符)

★ 符号名称:和集 [&]
◆ 符号解释:两个或两个以上的集合的所有元素组成一个新的集合,称为和集
◆ 使用示例:
双目运算符
(1,2,3)&=1 2 3 1 3 4

★ 符号名称:并集 [+]
◆ 符号解释:两个或两个以上集合并在一起并去除其中重复元素的集合,称为并集
◆ 使用示例:
双目运算符
(1,2,3,5,9)+=1 2 3 5 9 4

★ 符号名称:差集 [-]
◆ 符号解释:第一个集合减去第二个集合所包含的元素,称为差集!
◆ 使用示例:
1.双目运算符
(1,2,3,5,9)-=2 5 9
2.单目运算符(去除数集中重复的元素)
(1,2,3,1,4,2,5)[-]=1 2 3 4 5

★ 符号名称:交集 [*]
◆ 符号解释:两个集合中都含有的元素
◆ 使用示例:
(1,2,3)*=1 3

★ 符号名称:补集 [/]
◆ 符号解释:两个集中非共同元素组成的集合(也叫反交集)
◆ 使用示例:
(1,2,3)/=2 4

★ 符号名称:逆集 []
◆ 符号解释:第二个集合减去第一个集合所包含的元素,称为逆集(也叫反差集)
◆ 使用示例:
(1,2,3)[](1,3,4)=4

★ 符号名称:平集 [!]
◆ 符号解释:两个集合的和集中,只出现一次的元素组成的集合称为平集
◆ 使用示例:
(1,2,3,2,5,6,2,1,4,3,2)!=6 9 7

★ 符号名称:频集 [!!]
◆ 符号解释:两个集合的和集中,出现两次以上的元素组成的集合称为频集
◆ 使用示例:
(1,2,3,2,5,6,2,1,4,3,2)!!=1 2 3 5 4

★ 符号名称:求和运算符号 [++]
◆ 符号解释:集合中所有元素的总和
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
1. ++=20
2. (1,4,7)[++]=12

★ 符号名称:内积 [**]
◆ 符号解释:集合中所有元素的乘积
◆ 使用示例:
**=1600

★ 符号名称:算术平均值 [~]
◆ 符号解释:集合中所有元素的总和并除以元素的个数所得的值
◆ 使用示例:
此运算符是单目运算符, 可放在操作数前,也可放在操作数后面
A. 前置式 ~=2
B. 后置式 (2.5,3,9)[~]=4.8333

★ 符号名称:标准方差 []
◆ 符号解释:样本方差的算术平方根叫做样本标准差
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
1. (1,5,3;6,8,2;9,1,6)[
]=2.9627
2. ~~=2.9627

★ 符号名称:n项移动平均 [~n]
◆ 符号解释:对数集进行n项移动平均
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
A. 2项移动平均 ~2=1.5 2.5 2.5 3 3 3.5
B. 3项移动平均 (1,2,3,2,4,2,5)[~3]=2 2.3333 3 2.6667 3.6667

★ 符号名称:方差 [~^]
◆ 符号解释:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
1. (1,5,3;6,8,2;9,1,6)[~^]=8.7778
2. ~^=8.7778

★ 符号名称:频数表 [^]
◆ 符号解释:列出数集中元素出现的次数
◆ 使用示例:
单目运算符 有四种表现形式
1. [^]或[^1] 按出现次数降序排列
2. [^2] 按出现次数升序排列
3. [^3] 按元素从大到小排列
3. [^4] 按元素从小到大排列

★ 符号名称:矩阵求逆 [-1]
◆ 符号解释:N阶方阵A、B,若有AB=1则称B是A的逆矩
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
(1,5,3;6,8,2;9,1,6)[-1]= 或 -1=
-0.1901 0.1116 0.0579
0.0744 0.0868 -0.0661

★ 符号名称:中值 [|]
◆ 符号解释:把集合从小到大排序,处在中间的值称为中值,也叫中间值
◆ 使用示例:
(1,2,3,2,5,6,2,1,4,3,2)[|]=3.5
|=3

★ 符号名称:众数 [||]
◆ 符号解释:在集合中出现次数最多的数称为众数,也叫典型值
◆ 使用示例:
||=

2 4(出现的次数)

(1,2,3,2,1,3,6,5,2,4,8,5,6,9,5,4,2,5)[||]=

2 4(出现的次数)

5 4(出现的次数)

★ 符号名称:累加数列 [&+]
◆ 符号解释:通过数列间各数据的依个累加得到新的数据与数列
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
&+=2 7 8 14 18 21
(2,5,1,6,4,3)[&+]=2 7 8 14 18 21

★ 符号名称:累减数列 [&-]
◆ 符号解释:数列中后一个数减前一个数组成的新数列(累加数列的逆运算)
◆ 使用示例:
(1,2,3,4,5,6,7,8,9)[&-]=1 1 1 1 1 1 1 1 1

★ 符号名称:倒数数列 [&/]
◆ 符号解释:取得数集所有元素的倒数组成的集合
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
(2,5,1,6,4,3)[&/]=0.5 0.2 1 0.1667 0.25 0.3333
&/=0.5 0.2 1 0.1667 0.25 0.3333

★ 符号名称:倒数和 [/+]
◆ 符号解释:数集中所有元素的倒数的总和
◆ 使用示例:
/+=2.2833

★ 符号名称:几何平均值 [*~]
◆ 符号解释:集合的内积的元素个数的倒数次方(也叫级均值)
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
1. (1,4,7)[*~]=3.0366
2. *~=3.0639

★ 符号名称:调和平均值 [/~]
◆ 符号解释:集合中所有元素的倒数的平均数的倒数(也叫谐均值)
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
1. (1,4,7)[/~]=2.1538
2. /~=2.3316

★ 符号名称:最小值 [<]
◆ 符号解释:集合中最小的数
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
>=2
(9,5,18,2,6)[>]=2

★ 符号名称:最大值 [>]
◆ 符号解释:集合中最大的数
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
>=6
(9,5,18,2,6)[>]=18

★ 符号名称:从大到小排列 [>>]
◆ 符号解释:把数集按照从大到小的顺序排列
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
(2,5,1,6,4,3)[>>]=6 5 4 3 2 1
>>=6 5 4 3 2 1

★ 符号名称:从小到大排列 [<<]
◆ 符号解释:把数集按照从小到大的顺序排列
◆ 使用示例:
单目运算符, 可放在操作数前,也可放在操作数后面
(2,5,1,6,4,3)[<<]=1 2 3 4 5 6
<<=1 2 3 4 5 6

★ 符号名称:反转 [<>]
◆ 符号解释:把数集所有元素前后倒转
◆ 使用示例:
此运算符是单目运算符, 可放在操作数前,也可放在操作数后面
(1,2,3)[<>]=3 2 1
<>=3 2 1

★ 符号名称:极差 [><]
◆ 符号解释:集合中最大数与最小数之间的差距,也就是最大值减最小值所得的值
◆ 使用示例:
><=3

★ 符号名称:转置 [T]
◆ 符号解释:对数列或矩阵转置 (注与反转的区别)
◆ 使用示例:
1.转置数列 (1,2,3)[t]=1;2;3
2.转置矩阵 (1,2;3,4)[t]=
1 3
2 4

★ 符号名称:数据个数 [N]
◆ 符号解释:获取数集中元素的个数
◆ 使用示例:
(1,2,3,4,5)[n]=5
N=5

★ 符号名称:第n个元素值 [n]
◆ 符号解释:取出数列中第n个元素的值
◆ 使用示例:
(1,2,5,3,6)[3]=5

★ 符号名称:第i行第j列值 [i,j]
◆ 符号解释:取得矩阵中位置(i,j)处的元素值
◆ 使用示例:
(1,5,3;6,8,2;9,1,6)[2,2]=8

★ 符号名称:行数 [R]
◆ 符号解释:取得矩阵的行数
◆ 使用示例:
(1,5,3;6,8,2;9,1,6)[R]=3

★ 符号名称:取出行 [Ri]
◆ 符号解释:取得矩阵中第 i 行
◆ 使用示例:
(4,5;6,7;5,2)[r2]=6 7

★ 符号名称:取出部分行 [Ri,j]
◆ 符号解释:从矩阵第 i 行开始取j行
◆ 使用示例:
(4,5;6,7;5,2)[r2,2]=
6 7
5 2

★ 符号名称:添加行 [+R]
◆ 符号解释:把第二个矩阵的所有行加到第一个矩阵的后面
◆ 使用示例:
(1,2,3)+r=

1 2 3

4 5 6
(1,2,3;7,8,9)+r=

1 2 3

7 8 9

4 5 6

★ 符号名称:添加一行 [+Ri]
◆ 符号解释:把第二个矩阵的第i行加到第一个矩阵的后面
◆ 使用示例:
(4,5,6;7,5,2)+r2=

4 5 6

7 5 2

2 2 2

★ 符号名称:行交换或替换 [Ri=Rj]
◆ 符号解释:1.第i行与第j行交换 2.第一个矩阵i行替换成第二个矩阵的j 行
◆ 使用示例:
1.行交换(单目运算) (4,5,6;7,5,2)[r1=r2]=
7 5 2
4 5 6
2.行替换(双目运算) (4,5,6;7,5,2)r1=r1=
1 1 1
7 5 2

★ 符号名称:列数 [C]
◆ 符号解释:取得矩阵的列数
◆ 使用示例:
(1,5,3;6,8,2;9,1,6)[c]=3

★ 符号名称:取出列 [Ci]
◆ 符号解释:取得矩阵中第 i 列
◆ 使用示例:
(4,5,6;7,5,2)[c2]=5;5

★ 符号名称:取出部分列 [Ci,j]
◆ 符号解释:从矩阵第 i 列开始取j列
◆ 使用示例:
(4,5,6;7,5,2)[c2,2]=
5 6
5 2

★ 符号名称:添加列 [+C]
◆ 符号解释:把第二个矩阵的所有列加到第一个矩阵的后面
◆ 使用示例:
(1;2;3)+c= (1;2;3)+c=
1 4 1 4 5
2 5 2 6 7
3 6 3 5 2

★ 符号名称:添加一列 [+Ci]
◆ 符号解释:把第二个矩阵的第i列加到第一个矩阵的后面
◆ 使用示例:
(1;2;3)+c2=

1 5

2 7

3 2

(1;2;3)+c1=

1 4

2 6

3 5

★ 符号名称:列交换或替换 [Ci=Cj]
◆ 符号解释:1.第i列与第j列交换 2.第一个矩阵i列替换成第二个矩阵的j 列
◆ 使用示例:
1.列交换(单目运算) (4,5,6;7,5,2)[c1=c3]=
6 5 4
2 5 7
2.列替换(双目运算) (4,5,6;7,5,2)c1=c1=
1 5 6
2 5 2

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页