自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Felaim的博客

尽人事,听天命!我的邮箱是fanrongrong_Felaim@163.com欢迎各位小伙伴们一起交流!O(∩_∩)O哈哈~

  • 博客(7)
  • 资源 (1)
  • 论坛 (2)
  • 问答 (1)
  • 收藏
  • 关注

原创 功能性函数模块:汇总篇

LZ准备把经常使用的函数模块整理一下,后面在使用的时候直接搭个积木就可以啦1. 计算IOU

2020-12-17 09:45:18 183

原创 功能性模块:(6)视频切割成图片:OpenCV版

功能性模块:(6)视频切割成图片:OpenCV版一、模块介绍这个其实是功能性模块(5)的反向过程,主要的目的是将视频抽成图片,这样便于逐帧分析,或者进行其他应用,这个看小伙伴们需求。二、代码实现def Video2Frame(videopath): """ :param video_root: 视频的根目录 :return: """ video_names = os.listdir(videopath) for video_name in video

2020-12-29 16:53:07 124 1

原创 功能性模块: (5)图片生成视频:ffmpeg版和OpenCV版

功能性模块:(5)图片生成视频:ffmpeg版和OpenCV版一、模块介绍这个模块其实是非常常用、基本的模块了,主要就是针对一些需要依靠视频才能评判效果的一些应用,当然小伙伴们按自己的需求来吧。这个图片呢其实是LZ事先处理好的,这个里有一个小技巧可以分享给小伙伴们,在图像命名的时候尽量以00001.jpg,00002.jpg这种方式来命名,这样对图像进行排序的时候也会更加方便,不至于出现1.jpg,10.jpg,2.jpg…这种情况,会非常麻烦。二、代码实现2.1 OpenCV版本OpenCV的

2020-12-29 14:46:29 136

原创 功能性模块: (4)感受野计算:疑惑中。。。

功能性模块:(4)感受野计算:疑惑中。。。一、模块介绍使用深度学习的小伙伴,相信对感受野这个概念肯定是不会陌生的,当时使用比较大尺寸的卷积核还是使用比较小的卷积核还引发了一系列的讨论,一层网络的感受野还是非常容易计算的,但是整个网络结构的感受野要怎么计算呢?其实对于本文中涉及到计算感受野的方式LZ也是比较有疑惑的,如果小伙伴有自己的理解,欢迎给LZ留言,一起探讨一下!LZ主要参考的文章是这一篇A guide to receptive eld arithmetic for Convolutional

2020-12-25 17:24:22 123

原创 功能性模块: (3)NMS :cpu版和pytorch版

功能性模块:(3)NMS :cpu版和pytorch版一、模块介绍如果小伙伴们接触过检测方面的算法,应该对NMS不会很陌生,NMS(Non-Maximum Suppression),即非极大值抑制,特别原理性的LZ就不专门介绍了,网上太多了。总的功能是什么呢?就是我们在做检测的时候,假设画面中有一个人脸,但是由于检测算法的不同,可能会在一个人脸上给出多个满足要求的检测框,我们当然不能把这些框都使用上,就挑选一个最满足要求的检测框就可以了。具体的效果如下图所示:二、代码实现1. cpu版本实现de

2020-12-25 15:44:46 297 1

原创 功能性模块:(2)解析xml

功能性模块:(2)解析xml一、 模块介绍为啥要写这个模块呢,通常公司给的标注文件都是以xml的格式,所以新手第一课就是解析xml,之前lz用的方法比较繁琐,现在有个还不错的方法,就记录一下吧。二、代码实现""" <object> <name>1</name> <angle_flag>face</angle_flag> <face_flag>0</face_flag> <fl

2020-12-25 13:42:19 69

原创 功能性模块: (1) 计算IOU

(1)计算IOU一、 模块介绍在实际应用中,其实我们在代码中经常会需要计算IOU,下面函数模块的输入分别为需要计算的两个矩形框的左上定点坐标和右下顶点坐标,通过IOU计算公式进行计算,代码已验证可以直接使用。二、代码实现def ComputeIOU(rec1, rec2): """ 计算两个矩形的iou,输入分别为左上角顶点和右下角顶点 :param rec1: (x0,y0,x1,y1) :param rec2: (x0,y0,x1,y1) :return:

2020-12-17 09:51:37 120

01-nbody.cu

Final Exercise: Accelerate and Optimize an N-Body Simulator,只上传题目,实现请自己实现

2020-05-30

希望在登录自己的账号后,隐私文章可以在自己登录界面显示

发表于 2020-06-16 最后回复 2020-06-16

Felaim的留言板

发表于 2020-01-02 最后回复 2020-04-30

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除